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Do We Need to Handle Every Temporal Violation in Scientific 

Workflow Systems?
 

XIAO LIU, East China Normal University and Swinburne University of Technology 

YUN YANG*, Anhui University and Swinburne University of Technology 

DONG YUAN, Swinburne University of Technology 

JINJUN CHEN, University of Technology Sydney 
 

Scientific processes are usually time constrained with overall deadlines and local milestones. In scientific 

workflow systems, due to the dynamic nature of the underlying computing infrastructures such as grid 

and cloud, execution delays often take place and result in a large number of temporal violations. Since 

temporal violation handling is expensive in terms of both monetary costs and time overheads, an essential 

question aroused is that “do we need to handle every temporal violation in scientific workflow systems?”.  

The answer would be “true” according to existing works on workflow temporal management which adopt 

the philosophy similar to the handling of functional exceptions, i.e. every temporal violation should be 

handled whenever it is detected. However, based on our observation, the phenomenon of self-recovery 

where execution delays can be automatically compensated for by the saved execution time of subsequent 

workflow activities has been entirely overlooked. Therefore, considering the non-functional nature of 

temporal violations, our answer is “not necessarily true”. To take advantage of self-recovery, this paper 

proposes a novel adaptive temporal violation handling point selection strategy where this phenomenon is 

effectively utilised to avoid unnecessary temporal violation handling. Based on simulations of both real 

world scientific workflows and randomly generated test cases, the experimental results demonstrate that 

our strategy can significantly reduce the cost on temporal violation handling by over 96% while 

maintaining extreme low violation rate under normal circumstances. 

Categories and Subject Descriptors: D 2.4 [Software Engineering] – Software/Program Verification, 

D.2.5.f [Testing and Debugging] – Error Handling and Recovery  

General Terms: Algorithms, Performance, Reliability, Verification 

Additional Key Words and Phrases: Scientific workflows, temporal constraints, temporal verification, 

violation handling point selection, quality of service  

ACM Reference Format: 

Xiao Liu, Yun Yang, Dong Yuan, Jinjun Chen, 201X. Do We Need to Handle Every Temporal Violation in 

Scientific Workflow Systems. ACM Trans. Softw. Engin. Method. X, X, Article XX  (XXX 201X), 37 pages.   

DOI:http://dx.doi.org/10.1145/0000000.0000000  

 

The research work reported in this paper is partly supported by Australian Research Council under  

LP0990393 and DP110101340, Natural Science Foundation of China under No. 61021004, and Shanghai 

Knowledge Service Platform for Trustworthy Internet of Things under No. ZF1213. 

Author’s addresses: Xiao Liu, Shanghai Key Laboratory of Trustworthy Computing, Software Engineering 

institute of East China Normal University, Shanghai, 200062, China & Faculty of Information and 

Communication Technologies, Swinburne University of Technology, Melbourne, Australia 3122; email: 

xliu@sei.ecnu.edu.cn; Yun Yang* (corresponding author), School of Computer Science and Technology, 

Anhui University, Hefei, 230039, China & Faculty of Information and Communication Technologies, 

Swinburne University of Technology, Melbourne, Australia 3122; email: yyang@swin.edu.au; Dong Yuan, 

Faculty of Information and Communication Technologies, Swinburne University of Technology, Melbourne, 

Australia 3122; email: dyuan@swin.edu.au; Jinjun Chen, Faculty of Engineering and Information 

Technology, University of Technology Sydney, Sydney, Australia 2007; email: jinjun.chen@uts.edu.au. 

 

 Permission to make digital or hardcopies of part or all of this work for personal or classroom use is 

granted without fee provided that copies are not made or distributed for profit or commercial advantage 

and that copies show this notice on the first page or initial screen of a display along with the full citation. 

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with 

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any 

component of this work in other works requires prior specific permission and/or a fee. Permissions may be 

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, 

fax +1 (212) 869-0481, or permissions@acm.org. 

© 2010 ACM 1539-9087/2010/03-ART39 $15.00 

DOI:http://dx.doi.org/10.1145/0000000.0000000 

mailto:xliu@sei.ecnu.edu.cn
mailto:yyang@swin.edu.au
mailto:dyuan@swin.edu.au
mailto:jinjun.chen@uts.edu.au


 INTRODUCTION 1.

A scientific workflow system is a type of high-level middleware service for high 

performance computing infrastructures such as grid, peer-to-peer (p2p) and cloud 

computing [Buyya et al. 2009; Yang et al. 2007; Yu and Buyya 2007]. From the 

perspective of software engineering, a scientific workflow system is a type of scientific 

software in the area of Software Engineering for Computational Science and 

Engineering which is attracting increasing attention from software engineering 

[SECES 2008] and scientific computing research communities [PDSEC 2009]. It is 

responsible for modelling and executing large-scale processes in a variety of complex 

computation and data intensive applications such as astrophysics, climate modelling 

and earthquake simulation [Deelman et al. 2008; Wang et al. 2009]. One of the 

software engineering research issues in the design and development of scientific 

workflow systems is temporal verification. Generally speaking, the purpose of 

temporal verification is to detect and recover any temporal violations in scientific 

workflow build-time specifications and runtime executions [Chen and Yang 2007a; 

Chen and Yang 2011; Eder et al. 1999; Marjanovic and Orlowska 1999; Zhuge et al. 

2001]. 

In reality, scientific workflows, and also some general software applications, 

normally require the completion before specific deadlines to achieve application goals 

on schedule. Otherwise, the usefulness of its execution results may be severely 

deteriorated. For example, a daily weather forecast scientific workflow has to be 

finished before the broadcasting of the weather forecast program everyday at, for 

instance, 6:00pm. For scientific research purposes, scientific workflows are usually 

deployed on distributed computing infrastructures such as grid/p2p/cloud with 

distributed geographical locations and/or highly dynamic performance [Buyya et al. 

2009; Deelman et al. 2008; Yang et al. 2007]. Therefore, temporal violations, as a 

type of non-functional QoS (quality of service) exceptions, may often occur along 

scientific workflow execution. To ensure satisfactory temporal QoS, four basic tasks 

of workflow temporal management are currently investigated in scientific workflow 

systems: temporal constraint setting [Liu et al. 2011a], temporal violation checkpoint 

selection [Chen and Yang 2008b], temporal verification [Chen and Yang 2007a] and 

temporal violation handling [Liu et al. 2011c]. Among them, a runtime checkpoint 

selection strategy aims at selecting activity points to conduct temporal verification 

and/or violation handling for large scale scientific workflows which may contain 

thousands or even hundreds of thousands of activities [Taylor et al. 2007]. Temporal 

violation handling is to execute violation handling strategies which can compensate 

for the occurring time deficit (the time delays over specific temporal constraints) but 

would impose some additional cost. Generally speaking, the two fundamental 

requirements for delivering satisfactory temporal QoS in scientific workflow systems 

are temporal conformance and cost effectiveness.  

Temporal conformance. The ultimate goal for workflow temporal management is 

to maintain satisfactory runtime temporal conformance, i.e. timely completion of 

scientific workflows according to assigned temporal constraints. Temporal 

conformance can be measured by the violation rate of temporal constraints, e.g. the 

violation rate of global deadlines (i.e. the number of scientific workflows failed with 

timely completion divided by the total number of scientific workflows). Evidently, the 

lower the violation rate, the better the temporal conformance is.  

Cost effectiveness. Every task for workflow temporal management incurs some 

cost. Take a single temporal violation handling as an example, its cost can be 

primarily referred to monetary costs and time overheads of violation handling 

strategies which are normally non-trivial in scientific workflow systems [Prodan and 

Fahringer 2008]. The overall cost of temporal violation handling is proportional to 

the number of times that violation handling strategies have been executed, i.e. the 



number of selected temporal violation handling points (or handling points for short in 

this paper). Clearly, given similar temporal conformance (i.e. the temporal violation 

rate), the smaller the number of selected handling points, the better the cost 

effectiveness is.  

The existing state-of-the-art work on workflow temporal management adopts the 

philosophy that to maintain satisfactory temporal conformance, similar to the 

handling of functional exceptions, temporal violation handling is triggered on every 

necessary and sufficient temporal checkpoint [Chen and Yang 2008b]. Here, necessity 

means that only those activity points with temporal violations are selected and 

sufficiency means that no activity points with temporal violations are omitted. This is 

regarded as the benchmark for the evaluation of checkpoint selection strategies. In 

the real world, the number of selected checkpoints increases rapidly with the size of 

scientific workflows [Chen and Yang 2011]. Therefore, the cost on handling temporal 

violations can be very high in large scale scientific workflows. In general, the cost is 

regarded worthwhile for the requirement of temporal conformance. But considering 

the other requirement of cost effectiveness, a problem arises naturally: “do we need to 

handle every temporal violation in scientific workflow systems?”. Obviously, the 

answer would be “true” according to the existing works where necessity and 

sufficiency is the benchmark for checkpoint selection as well as violation handling 

point selection. However, in this paper, we argue that the answer is “not necessarily 

true” as there is a common phenomenon overlooked by most researchers that the 

execution delay, i.e. the occurring time deficit of a temporal violation detected at a 

checkpoint, may often be small enough so that the saved execution time of the 

subsequent workflow activities, i.e. the time redundancy (the redundant time 

between the execution time and the temporal constraint for the subsequent activities 

after the checkpoint), could automatically compensate for it. We name this 

phenomenon as “self-recovery”. For example, if the occurring time deficit is 10 

seconds, it will probably be compensated for by the time redundancy of the next 

activity which has a mean duration of 10 minutes. In conventional strategies, this 10-

second time deficit must be treated with violation handling since a temporal violation 

is detected. Such unnecessary violation handling may impose a high cost eventually. 

Upon our observation (as to be illustrated by the motivating example in Section 2.1), 

self-recovery is common in scientific workflow systems where minor delays often 

occur due to highly dynamic performance of the underlying computing infrastructure. 

Therefore, there is a good chance to reduce the cost on handling temporal violations 

which deserves a systematic investigation.  

In this paper, we aim at reducing the unnecessary violation handling cost for 

temporal violations as much as possible while maintaining satisfactory temporal 

conformance. Given the requirements of temporal conformance and cost effectiveness, 

the essence is to select key instead of all checkpoints as handling points to resolve 

temporal violations. In fact, conceptually, handling point selection is similar to 

software testing [Chen and Merkel 2008; Sommerville 2009] where the input domain 

is known but large (i.e. many checkpoints), hence only a small portion of the input 

domain is selected as test cases (i.e. handling points) so that software failures (i.e. 

temporal violations) can be effectively detected and then handled with limited 

resources. Inspired by the idea of adaptive random testing [Chen and Merkel 2008], 

this paper proposes a novel adaptive temporal violation handling point selection 

strategy which would only select a small subset of the necessary and sufficient 

checkpoints as handling points. Differing from the existing work on checkpoint 

selection which utilises qualitative measurements, this paper employs a probability 

based runtime temporal consistency model to facilitate statistical analysis and 

measure temporal violations in a quantitative fashion. The probability of self-

recovery and the adaptive probability threshold are the two basic parameters for 



selecting handling points in scientific workflow systems. Based on simulations of 

both real world scientific workflows and randomly generated test cases, the 

experimental results demonstrate that our strategy can significantly reduce the 

violation handling cost while maintaining satisfactory temporal conformance.  

Specifically, this paper has made the following significant contributions with the 

details presented in the following sections: 

1) For the first time, the problem of “temporal violation handling point selection” 

is identified.  

2) For the first time, the phenomenon of “self-recovery” is formally defined.    

3) For the first time, with our probability based temporal consistency model, an 

adaptive cost-effective temporal violation handling point selection strategy is 

proposed. 

The remainder of the paper is organised as follows. Section 2 discusses a 

motivating example and analyses the problems. Section 3 presents an overview of the 

probability based runtime temporal consistency model. Section 4 proposes our novel 

adaptive violation handling point selection strategy. Section 5 demonstrates the 

comprehensive experimental results. Section 6 describes the related work. Finally, 

Section 7 addresses the conclusions and points out the future work.  

 MOTIVATING EXAMPLE AND PROBLEM ANALYSIS 2.

 Motivating Example  2.1

In this section, we present a motivating example in Astrophysics. Parkes Radio 

Telescope, one of the most famous radio telescopes in the world, is serving 

institutions from different nations (http://www.parkes.atnf.csiro.au/). Swinburne 

Astrophysics group (http://astronomy.swinburne.edu.au/) has been conducting pulsar 

searching surveys (http://astronomy.swin.edu.au/pulsar/) based on the observation data 

from Parkes Radio Telescope. The Parkes multibeam pulsar survey is very successful 

to date. The pulsar searching process is a typical scientific workflow which is 

collaborative, distributed, large scale, and it involves a great number of data 

intensive and computation intensive activities. For a single pulsar searching process, 

the average data volume (not including the raw stream data from the telescope) is 

over 4 terabytes and the average execution time is over 20 hours on Swinburne high 

performance supercomputing facility (http://astronomy.swinburne.edu.au/supercomputing/).  

For the convenience of discussion, as depicted in Figure 1, we only illustrate some 

high-level workflow activities and focus on one path in the total of 13 parallel paths 

for different beams (the other parallel paths are of similar nature and denoted by 

cloud symbols). The average durations (normally with large variances) for high-level 

activities (those with sub-processes underneath) and three temporal constraints are 

also presented. Due to the resource sharing of the supercomputing facility, each 

pulsar searching workflow is normally required to be completed in one day. Therefore, 

an overall upper bound temporal constraint )(SWU  of 24 hours, as the overall 

deadline, is assigned which denotes the acceptable maximum execution time.  

Generally speaking, there are four main steps in the pulsar searching workflow, 

viz. data collection, data pre-processing, candidate searching and decision making. 

The first step is data collection (about 1 hour). Data from Parkes Radio Telescope 

streams at a rate of 1Gb per second and stored at local RAID (Redundant Array of 

Independent Disks). The second step is data pre-processing which consists of Extract 

Beam, Transfer Data, De-disperse and Accelerate. For data extraction and transfer 

(about 1.5 hours), different beam files are extracted and transferred via gigabyte 

optical fibre. The beam files contain the pulsar signals which are dispersed by the 

interstellar medium. De-dispersion is to counteract this effect. A large number of de-

dispersion files are generated according to different choices of trial dispersions. In 

this scenario, 1,200 is the minimum number of dispersion trials, and it normally 

http://www.parkes.atnf.csiro.au/
http://astronomy.swinburne.edu.au/
http://astronomy.swin.edu.au/pulsar/
http://astronomy.swinburne.edu.au/supercomputing/


takes 13 hours to complete. For more dispersion trials such as 2,400 and 3,600, 

longer execution time is required or more computing resources need to be allocated. 

Furthermore, for binary pulsar searching, every de-dispersion file needs to undergo 

the Accelerate process. Each de-dispersion file generates several accelerated de-

dispersion files and the whole process takes around 1.5 hours. For example, if the 

path with 1,200 de-dispersion files is chosen, then a temporal constraint of 15.25 

hours, denoted as )( 1SWU , as one local milestone, can be assigned for the data pre-

processing step. The third step is candidate searching which consists of Seek, Get 

Candidates, Eliminate Candidates and Fold to XML. Given the generated de-

dispersion files, different seeking algorithms can be applied to search pulsar 

candidates, such as FFT Seek, FFA Seek, and Pulse Seek. For the instance of 1,200 

de-dispersion files, it takes around 1 hour for FFT Seek to search all the candidates. 

Furthermore, by comparing the candidates generated from different beam files in the 

same time session (around 20 minutes), some interference may be detected and some 

candidates may be eliminated (around 10 minutes). With the final pulsar candidates, 

the original beam files are retrieved to find their feature signals and fold them to 

XML files. This activity usually takes around 4 hours. Here, a temporal constraint of 

5.75 hours, denoted as )( 2SWU , as another local milestone, can be assigned for the 

candidate searching step. The last step is decision making where the XML files are 

inspected manually (by human experts) or automatically (by software) to facilitate 

the decision making on whether a possible pulsar is found or not (around 20 minutes).  

Here, we only illustrate two representative situations to present the motivation of 

our work whilst in reality there could be many temporal constraints assigned for 

effective temporal verification at the lower levels. One situation is that during the 

second step of data pre-processing, delays may often occur in the activity of de-

dispersion which needs to process terabytes of data and consumes more than 13 

hours computation time. Here, for example, we assume that the de-dispersion 

activity takes 14.5 hours (a delay of 90 minutes, i.e. around 10% over the mean 

duration), then given )( 1SWU  of 15.25 hours, there would only be 45 minutes left for 

the Accelerate activity which normally needs 1.5 hours. Even if we expect it can be 

finished 10 minutes less than its mean duration (around 10% of the mean duration), 

i.e. the Accelerate activity can be finished in 80 minutes, there would still be a 35 

minute time deficit. Therefore, under such a situation, at that stage, some violation 

handling should be invoked to decrease the duration for the Accelerate activity to at 

most 45 minutes by, for example, recruiting additional resources to maintain 

temporal conformance. Another situation is during the third step of pulsar seeking. 

We assume that the overall duration for the FFT Seek, Get Candidates and Eliminate 

Candidates activities is 108 minutes (a delay of 18 minutes, i.e. around 20% over the 

mean duration). In such a case, given )( 2SWU  being 5.75 hours, there will probably 

be a 3 minutes delay if the subsequent activity completes on time. However, this 3 

 

AccelerateCollect 

data

Transfer 

Data 

Pulse 

Seek

FFA 

Seek

Get 

Candidates

Eliminate 

candidates

Fold to 

XML

Extract 

Beam

Get 

Candidates

U(SW)=24hours

…
..
.

…...

…
…

…...

Make   

Decision 

U(SW1)=15.25hours
U(SW2)=5.75hours

De-disperse (1200)

De-disperse (3600)

De-disperse (2400)

…...

Extract 

Beam

1hour

13hours

1.5hours

1hour

20minutes 4hours

20minutes

1.5hours

10minutes 20minutes

Transfer 

Data 

…
… FFT 

Seek

Data 

Collection
Data Pre-processing Decision 

Making
Candidate Searching

 

Fig. 1. An example scientific workflow for pulsar searching in astrophysics.  



minutes time deficit is a small fraction compared with the mean duration of 4 hours 

for the subsequent Fold to XML activity. Actually, there is a high probability that it 

will be automatically compensated for since it only requires the subsequent activity 

to be finished 1.25% shorter than its mean duration. In such a situation, it is 

normally unnecessary to trigger violation handling. However, regardless the 

probability of self-recovery, violation handling is always invoked in conventional 

strategies since a temporal violation is in fact detected.  

Based on the observation, with a large number of individual workflow activities, 

the situations similar to the second one described above often occur, especially when 

the underlying resources are of highly dynamic performance. Therefore, if we can 

define and detect such a phenomenon, there is a good chance of significantly reducing 

the number, hence the cost, of temporal violation handling. 

 Problem Analysis 2.2

In the existing work on workflow temporal management [Chen and Yang 2008b; 

Chen and Yang 2011], temporal violation handling point selection is not regarded as 

an independent task since they normally adopt the philosophy that temporal 

violation handling should be conducted whenever a temporal violation is detected, i.e. 

handling point selection is the same as checkpoint selection by nature. Accordingly, 

no matter whether it is a major time deficit of 35 minutes or a minor time deficit of 3 

minutes as described in the motivating example, it is selected as a handling point 

and followed by applying temporal violation handling strategies. However, in the real 

world, it is normally unnecessary to trigger violation handling for a minor time 

deficit since there is a high probability that it can be automatically compensated for 

by the time redundancy of the subsequent activities as the second situation described 

in the motivating example. Therefore, a checkpoint is not necessarily a handling 

point.  

As indicated earlier, given the two fundamental requirements of temporal 

conformance and cost effectiveness, the challenging issue for temporal violation 

handling point selection is “how to select the key checkpoints”. To address such an 

issue, we need to solve the following two major problems. 

1) How to measure temporal violations in a quantitative fashion 

To reduce the overall cost of temporal violation handling is to reduce the total 

number of times that temporal violation handling strategies have been invoked. For 

such a purpose, we need to detect those “minor” temporal violations which have 

relatively small time deficits. Therefore, it is important that we are able to measure 

temporal violations in a quantitative fashion. However, most of the existing temporal 

consistency models utilise static time attributes such as the maximum, mean and 

minimum durations to define coarse-grained qualitative expressions such as the 

violation of strong consistency, weak consistency, weak inconsistency and strong 

inconsistency to measure the occurring temporal violations [Chen and Yang 2007b; 

Chen and Yang 2011]. To facilitate the statistical analysis of the occurring time 

deficit and the expected time redundancy at workflow runtime, it is better to model 

activity durations with dynamic variables (following probability distribution models) 

instead of static time attributes, especially in dynamic system environments [Law 

and Kelton 2007; Liu et al. 2011a]. Therefore, quantitative measurement of temporal 

violations is required based on statistic models.   

2) How to decide whether a checkpoint needs to be selected as a handling point or 

not  

To reduce the number of handling points is to omit those necessary and sufficient 

checkpoints where the occurring minor time deficits have a high probability of being 

compensated for by the expected time redundancy of subsequent activities, i.e. self-

recovery. For a necessary and sufficient checkpoint where a temporal violation is 



detected, the occurring time deficit detected at the checkpoint and the expected time 

redundancy of the subsequent activities after the checkpoint are the basic factors to 

decide whether a checkpoint should be selected as a handling point or not. Therefore, 

an effective strategy is required to define the time deficit and time redundancy, and 

estimate the probability of self-recovery so as to determine the selection of temporal 

violation handling points in scientific workflow systems.  

 PRELIMINARY: A PROBABILITY BASED RUNTIME TEMPORAL CONSISTENCY MODEL 3.

In this section, we present an overview of a probability based runtime temporal 

consistency model which is the preliminary for our adaptive temporal violation 

handling point selection strategy to be proposed in Section 4. Conventional discrete-

state based temporal consistency models are of very limited ability in performing 

complex statistical analysis. Therefore, as proposed in [Liu et al. 2008; Liu et al. 

2011c], a probability based temporal consistency model is defined to estimate the 

probability of meeting given temporal constraints. This model employs the popular 

“ 3 ” rule to specify activity durations [Stroud 2007]. The “ 3 ” rule depicts that for 

any sample coming from a normal distribution model, it has a probability of 99.74% 

to fall into the range of ]3,3[   , i.e. the probability range of (0.13%, 99.87%), 

where   is the expected value and   is the standard deviation. Therefore, the 

maximum, mean and minimum durations of activity ia  can be defined as 

iiiaD  3)(  , iiaM )(  and iiiad  3)(   respectively where i  is the sample 

mean and i  is the sample standard deviation. Its actual duration at runtime is 

denoted as )( iaR . The expected value and standard deviation can be obtained from 

historic data such as scientific workflow system logs through statistical methods 

[Law and Kelton 2007]. Based on the approaches proposed in [Liu et al. 2011a; Liu et 

al. 2011c], the workflow completion time can be effectively estimated with the joint 

normal distribution of individual activity durations. 

Generally speaking, temporal constraints mainly include three types: upper 

bound, lower bound and fixed-time [Chen and Yang 2007b]. An upper bound 

constraint between two activities is a relative time value so that the duration 

between them must be less than or equal to it. A lower bound constraint between two 

activities is a relative time value so that the duration between them must be greater 

or equal to it. A fixed-time constraint at an activity is an absolute time value by 

which the activity must be completed. As discussed in [Chen and Yang 2007a], 

conceptually, a lower bound constraint is symmetrical to an upper bound constraint, 

and a fixed-time constraint can be regarded as a special case of an upper bound 

constraint of which the start time of the workflow is determined. Hence upper bound 

is the most general type of temporal constraints. Therefore, we only focus on upper 

bound constraints in this paper.  

The probability based runtime temporal consistency model is defined as follows. 

Definition 1 (Temporal Consistency Model): For a scientific workflow SW  

which covers activity la  to activity na , at activity pa ( np  ), the upper bound 

temporal constraint )(SWU  with the value of ),( nl aau , is said to be of: 

1) Absolute Consistency (AC),                                                                

if ),()3(),(
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nl

n

pi
iipl aauaaR  



 ; 
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Fig. 2. Probability based temporal consistency model. 

 

Note that for the convenience of discussion, in this paper, we only consider a 

single execution path in DAG (directed acyclic graph) based workflow instance [Chen 

and Yang 2008b], but the results can be applied equally to multiple paths (e.g. 

parallel structures) similarly by the repetition method as used in [Chen and Yang 

2007a; Chen and Yang 2008b]. Specifically, for a scientific workflow containing many 

parallel, choice and/or mixed structures, firstly, we treat each structure as a 

compound activity. Then, the whole scientific workflow will be an overall execution 

path and we can apply the results achieved in this paper to it. Secondly, for every 

structure, for each of its branches, we continue to apply the results achieved in this 

paper. Thirdly, we carry out this recursive process until we complete all branches of 

all structures. 

As depicted in Figure 2, every temporal consistency state is represented with a 

unique probability value and they jointly form a continuous Gaussian curve which 

stands for the cumulative normal distribution [Stroud 2007]. According to the “ 3 ” 

rule, most runtime temporal consistency states (i.e. 99.74% of them) belong to the 

probability consistency range of (0.13%, 99.87%) which is represented by the 

shadowed area. At scientific workflow runtime, a temporal violation occurs when the 

probability consistency is below %  as shown in the area marked with upwards 

diagonal lines in Figure 2, while the probability consistency range of ( % ,99.87%) 

marked with downwards diagonal lines requires no action. Here, the threshold of %  

denotes the minimum acceptable temporal consistency state and it is usually 



specified through the negotiation between users and service providers as a type of 

QoS contract. In practice, %  would normally be around 90%, i.e.  28.1 , to serve 

as a satisfactory user requirement on temporal conformance [Liu et al. 2011a]. 

Therefore, if temporal consistency of %  ( % Consistency) is larger than % , 

including AC (Absolute Consistency), no action is required as the QoS contract holds. 

Otherwise, if %  is smaller than % , including AI (Absolute Inconsistency), 

violation handling should be triggered for temporal violations according to the 

conventional philosophy of workflow temporal management since a temporal 

violation is detected. However, this will no longer be the case given our contribution 

on the temporal violation handling point selection proposed in this paper. The details 

will be presented in Section 4. Meanwhile, note that AI ( % is smaller than 0.13%) is 

normally regarded as non-recoverable unless additional computing resources are 

recruited from the outside of the current system [Liu et al. 2011b]. In this paper, we 

focus on recoverable temporal violations within the range of (0.13%, % ). The work in 

[Hagen and Alonso 2000; Russell et al. 2006a] can be referred for a general overview 

on exception handling in workflow systems.  

 NOVEL ADAPTIVE TEMPORAL VIOLATION HANDLING POINT SELECTION STRATEGY 4.

Motivated by the phenomenon of self-recovery and the idea of adaptive random 

testing, our novel adaptive temporal violation handling point selection strategy aims 

at selecting a small subset of the necessary and sufficient temporal checkpoints as 

handling points. The state-of-the-art checkpoint selection strategy is the temporal 

dependency based checkpoint selection strategy ( TDCSS ) which is proposed in [Chen 

and Yang 2011].  Therefore, we use the results of TDCSS  as the input for our strategy. 

But since TDCSS  employs the multiple states based temporal consistency model 

[Chen and Yang 2007b] to define the temporal dependency, we need to revise the 

definition to match our probability based temporal consistency model. Therefore, in 

Section 4.1, we first review and revise the definition of temporal dependency, and 

then the two basic theorems for TDCSS  are modified accordingly and proved to 

demonstrate that our temporal violation handling point selection strategy can be 

seamlessly integrated with TDCSS . Afterwards, in Section 4.2, we present our 

adaptive temporal violation handling point selection strategy based on the checkpoint 

selection results of TDCSS . 

 Probability Temporal Dependency 4.1

Scientific workflows are normally of large size and may consist of many sub-processes, 

hence scientific workflow activities are often covered by multiple temporal 

constraints such as coarse-grained temporal constraints (e.g. global deadlines) and 

fine-grained temporal constraints (e.g. local milestones) [Liu et al. 2011a]. Therefore, 

multiple times of temporal verification are often required for all temporal constraints 

to detect temporal violations and their time deficits at all checkpoints. Unfortunately, 

this will give rise to a huge increase in the computation cost and time overheads for 

temporal verification. To address such a problem, TDCSS  investigates the temporal 

dependency between different upper bound temporal constraints. The results have 

shown that at any specific checkpoint, for those temporal constraints which cover the 

checkpoint and have the same type of temporal dependency, such as SC (Strong 

Consistency) temporal dependency, temporal verification is needed once only to verify 

all of them. Therefore, many times of unnecessary temporal verification are avoided. 

Based on the similar idea, in this paper, we apply temporal dependency in our 

temporal violation handling point selection strategy for multiple temporal 

constraints. 
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Fig. 3. Two nested upper bound temporal constraints. 

 

 The work in [Chen and Yang 2011] has introduced both non-nested and nested 

scenarios for temporal constraints based on Allen’s temporal interval logic [Allen 

1983]. Since non-nested temporal constraints have no temporal dependency, we only 

focus on nested scenarios in this paper. Here, we start from the illustration of two 

nested upper bound temporal constraints as depicted in Figure 3 and then move on to 

more general cases with a series of upper bound temporal constraints as depicted in 

Figure 4.  

As depicted in Figure 3, in general, there are three types of temporal dependency 

between two nested temporal constraints, viz. general nested, left joint and right 

joint. We start from Scenario 1. Here, we have two upper bound constraints 1U  and 

2U , and we assume they have %  probability temporal dependency and pa

( 2112 jjpii  ) is selected as the checkpoint for 1U  and 2U  by TDCSS . Here, 

similar to SC temporal consistency as defined in [Chen and Yang 2011], the %  

probability temporal dependency is defined as follows. 

Definition 2: ( %  Probability Temporal Dependency). 

Given 1U  and 2U  illustrated above where 1U  is between 
1i

a  and 
1j

a and 2U  is 

between 
2i

a  and 
2j

a ( 2112 jjii  ), namely  1U  is nested in 2U  as in Scenario 1, 

then, if ),(),(),(),(
2221111112 jijjjiii aauaaaauaa    , % probability temporal 

dependency between 1U  and 2U  is defined as consistent, or in other words, 1U  and 

2U  have %  probability temporal dependency. Here, 
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where   is the %  confidence percentile as explained in Definition 1, and others 

are similar.  

Definition 2 also applies to Scenario 2 and Scenario 3 where 2112 jjii  . 

We now investigate the probability temporal dependency between more general 

cases with a series of temporal constraints. As depicted in Figure 4, we can see that 

Scenario 4, Scenario 5 and Scenario 6 are extensions of Scenario 1, Scenario 2 and 

Scenario 3 respectively. Scenario 7 is the combination of Scenario 4, Scenario 5 and 

Scenario 6. 
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Fig. 4. A series of nested upper bound temporal constraints. 

 

The core of TDCSS  is based on two theorems. The first theorem states that the 

temporal dependency is transitive. The second theorem states that for temporal 

constraints with temporal dependency, if the previous temporal constraints (e.g. 2U ) 

are consistent, then the later temporal constraints (e.g. 3U ) must be consistent. Here, 

we modify these two theorems according to our probability based temporal 

consistency model and prove that the conclusion is the same. 

THEOREM 1. Let 1U , 2U ,.., NU   be the N  upper bound constraints (as in Figure 4) 

where 1U  is between 
1i

a  and 
1j

a , and 2U  is between 
2i

a  and 
2j

a  and so forth 

( NN jjjiii  ...... 2112 ), namely 1U  is nested in 2U , 2U  is nested in 3U  and 

so forth. Then, if probability temporal dependency between two adjacent upper bound 

constraints kU  and 1kU  is consistent ( 11  Nk ), the probability temporal 

dependency between any two non-adjacent upper bound constraints must also be 

consistent.  

PROOF: Since Scenarios 5, 6, and 7 can actually be viewed as special cases of 

Scenario 4, we take Scenario 4 as an example to conduct the proof. For simplicity, we 

consider 1U , 2U , and 3U . Suppose %  temporal dependency between 1U  and 2U  is 

consistent and %  temporal dependency between 2U  and 3U  is also consistent. Now 

we prove that %  temporal dependency between 1U  and 3U  is also consistent. That 

is to say, the probability temporal dependency is transitive. According to Definition 

2, we have inequations (1) and (2) below: 

         ),(),(),(),(
2221111112 jijjjiii aauaaaauaa                                (1) 

        ),(),(),(),(
3331222123 jijjjiii aauaaaauaa                                (2) 

Given inequations (1) and (2), we can have ),(),(),(
31111113 jjjiii aaaauaa     = 

),(),(),(),(),(
31221111112123 jjjjjiiiii aaaaaauaaaa   

),(),(),(),(
3331222123 jijjjiii aauaaaauaa    , hence we can have inequation (3) 

below: 

  ),(),(),(),(
3331111113 jijjjiii aauaaaauaa                                (3) 



According to Definition 2, inequation (3) means that the %  probability 

temporal dependency between 1U  and 3U   is also consistent. Thus the theorem holds.  

THEOREM 1 is used at scientific workflow build time to verify the probability 

temporal dependency between nested upper bound constraints. Afterwards, at 

runtime execution stage, we can use THEOREM 2 which is defined as follows to deduce 

the consistency of later constraints (e.g. 3U ) from previous ones (e.g. 2U ). 

THEOREM 2: Consider two upper bound constraints kU  and sU  ( Nsk  ) where 

%  probability temporal dependency between kU  and sU  is consistent; kU  is 

between 
ki

a  and 
kj

a , and sU  is between 
si

a  and 
sj

a  and ( )skks jjii  , namely  

kU  is nested in sU . Then, at checkpoint pa  between 
ki

a  and 
kj

a , if 

),(),( 11  
kisikisi

aaaaR   and kU  is of %  consistency, then sU  must also be at least 

of %  consistency. 

PROOF:  if kU  is of %  consistency, then according to Definition 1, we have 

inequation (4) below: 

       ),(),(),(
1 kjkikjpipki

aauaaaaR 


                             (4) 

Meanwhile, since %  probability temporal dependency between kU  and sU is 

consistent, according to Definition 2, we have inequation (5) below: 

       ),(),(),(),(
11 sjsisjkjkjkikisi
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                             (5) 

if ),(),( 11  
kisikisi

aaaaR  , then based on inequations (4) and (5), we can have 

),(),(),(),(),(
111 sjsisjkjkjpipkikisi

aauaaaaaaRaa 


 , and then 

),(),(),(),(),(
111 sjsisjkjkjpipkikisi

aauaaaaaaRaaR 
  , and finally we can 

have ),(),(),(
1 sjsisjpipisi

aauaaaaR 


 . According to Definition 1, this result 

means that sU  is of at least %  consistency.  

Based on THEOREM 1 and THEOREM 2, we can conclude that the results obtained 

by TDCSS  with the multiple states based temporal consistency model can also be 

applied to our probability based temporal consistency model. The detailed process of 

TDCSS  can be found in [Chen and Yang 2008b; Chen and Yang 2011] and hence 

omitted here. In our violation handling point selection strategy, we use the 

checkpoint selection results of TDCSS  as the input, so that the quality of the selected 

checkpoints is guaranteed.  

 Novel Handling Point Selection Strategy 4.2

With the probability based runtime temporal consistency model, we can 

quantitatively measure different temporal violations based on their probability 

temporal consistency states. Furthermore, at a specific checkpoint, the occurring 

time deficit and the expected time redundancy of subsequent activities need to be 

defined. We start from the definition of the probability time deficit.  

Definition 3: (Probability Time Deficit).  

At activity point pa , let )(SWU  with the value of ),( nl aau  which covers activity 

la  to activity na  be of % C  with the percentile of  , which is below the threshold 

of %  with the percentile of  . Then the probability time deficit of )(SWU  at pa  is 



defined as )),(( paSWUPTD = ),()],(),([ 1 nlnppl aauaaaaR   . Here, 

)(),(
1

1 


 
n

pk
kknp aa   .  

Definition 3 defines the probability time deficit at checkpoint pa  for a single 

temporal constraint )(SWU . As discussed above, multiple temporal constraints are 

common in scientific workflows. Therefore, the probability time deficit for multiple 

temporal constraints should be considered. Based on Definition 3, we have defined 

the maximum probability time deficit as follows. 

Definition 4: (Maximum Probability Time Deficit).  

Let 1U , 2U ,.., NU   be the N  upper bound constraints and all of them cover pa , 

then, at pa , the maximum probability time deficit is defined as the maximum of all 

probability time deficits of 1U , 2U ,.., NU  and is represented as )( paMPTD =

 NsaUPTDMax ps ,...,2,1),(  . 

The purpose of Definition 4 is to consider the general scenario with multiple 

temporal constraints like in Figure 4. Clearly, to handle temporal violations, we need 

to compensate for the maximum occurring probability time deficit, so that all the 

temporal violations can be recovered. Next, we define the probability time 

redundancy. 

Definition 5: (Probability Time Redundancy).  

At activity point pa , let )(SWU  be of % C with the percentile of   which is 

above the threshold of %  with the percentile of  . The subsequent activities are 

defined as those activities from the next activity of the checkpoint, i.e. 1pa , to the 

end activity of the next temporal constraint, e.g. mpa  . With a segment of size m  

from 1pa  to mpa  , the probability time redundancy of subsequent activities is

))(),(( ,1 mpp aaSWUPTR  which is equal to ),([),( 1 pnl aaRaau   

)],(),( 11 nmpmpp aaaaM    . Here, ),( 1 mpp aaM  is equal to 
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)(  and 

),( 1 nmp aa   is equal to )(
1





n

mpk
kk   .  

Similarly, we define the minimum probability time redundancy considering the 

general scenario with multiple temporal constraints. Clearly, when temporal 

violations are detected, the minimum probability time redundancy is preferred to be 

used to compensate for the time deficit in such a tentative situation. Otherwise, if the 

action fails, namely the skipping of the checkpoint as a handling point is 

unsuccessful, the subsequent temporal violations will become more serious.   

Definition 6: (Minimum Probability Time Redundancy).  

Let 1U , 2U ,.., NU   be the N  upper bound constraints and all of them cover pa , 

then, at pa , the minimum probability time redundancy is defined as the minimum of 

all probability time redundancies of 1U , 2U ,.., NU  and is represented as )( paMPTR =

 NsaaUPTRMin mpps ,...,2,1)),(,( 1  . 

The maximum probability time deficit is for measuring the occurring time deficit 

at the current checkpoint. The minimum probability time redundancy is for 

measuring the expected time redundancy (i.e. the time redundancy between the 



mean durations and the temporal constraints) of the subsequent activities at the 

current checkpoint. For example, at checkpoint pa , if the temporal constraint for 

activity 1pa  to mpa   is equal to    where   and   are the joint normal mean 

and standard deviation respectively, then the value of    is regarded as the 

expected time redundancy which can be used to compensate for the occurring time 

deficit. Furthermore, based on Definition 4 and Definition 6 above, the probability 

of self-recovery is defined as follows. 

Definition 7: (Probability of Self-Recovery).  

For activity point pa  which is covered by 1U , 2U ,.., NU , given the maximum 

probability time deficit (denoted as )( paMPTD ) and the minimum probability time 

redundancy (denoted as )( paMPTR ), the probability of self-recovery, i.e. the 

probability that )( paMPTD  can be compensated for  by )( paMPTR  is defined as: 
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Here, without any prior knowledge, it is difficult to decide which probability 

distribution model that T fits. Therefore, in this paper, we assume that T  follows a 

standard normal distribution 1 , i.e. )1,0(N  with the expected value of 0 and the 

standard deviation of 1. It is obvious that the larger the difference between 

)( paMPTR  and )( paMPTD , the higher the probability for self-recovery. For example, 

according to Definition 5, if )( paMPTR  is equal to )( paMPTD , i.e. T is equal to 0, the 

probability for self-recovery is 50%. If )( paMPTR  is twice as large as )( paMPTD , i.e. 

T is equal to 1, the probability for self-recovery is 84.13% [Stroud 2007]. Note that in 

practice, historic data can be employed to discover and modify the actual probability 

distribution models. Nevertheless, the strategy proposed here can be applied in a 

similar manner.  

After the probability of self-recovery is defined, a probability threshold is required. 

The probability threshold can be regarded as the minimum confidence for skipping 

temporal violation handling on a selected checkpoint yet still retaining satisfactory 

temporal conformance. Given a probability threshold, a temporal violation handling 

point selection rule is defined as follows.  

Definition 8: (Temporal Violation Handling Point Selection Rule).  

At activity pa , with the probability of self-recovery )(TP  and the probability 

threshold PT  ( 10  PT ), the rule for temporal violation handling point selection is 

as follows: if PTTP )( , then the current checkpoint is not selected as a handling 

point; otherwise, the current checkpoint is selected as a handling point.  

The probability threshold PT  is an important parameter in the handling point 

selection rule and it needs to be defined to facilitate handling point selection at 

workflow runtime. However, whether self-recovery will be successful or not can only 

be determined after the execution of the subsequent activities. It is difficult, if not 

impossible, to specify the optimal probability threshold which can select the minimal 

number of handling points while maintaining satisfactory temporal conformance. To 

address this problem, we borrow the idea from adaptive random testing where new 

test cases are generated based on the knowledge of previous test cases [Chen and 

 
1 Note that other distribution models can also be applied based on statistical analysis. However, the 

strategy for finding the best model is out-of-scope of this paper which can be investigated as a future work. 



Merkel 2008]. In our strategy, the probability threshold can start from any moderate 

initial values, e.g. 0.5, and it is then adaptively modified based on the results of 

violation handling along scientific workflow execution. Therefore, its initial value has 

very limited impact. The process of adaptive modification for PT  is as follows. 

Definition 9: (Adaptive Modification Process for Probability Threshold). 

Given current probability threshold PT  ( 10  PT ) and checkpoint pa  , i.e. a 

temporal violation is detected at pa  , PT is updated as )1(* PT . Afterwards, based 

on our handling point selection rule, if pa  is not selected as a handling point, then 

PT is updated as )1(* PT ; otherwise, PT  remains unchanged. Here,  ( 10   ) 

stands for the update rate which normally starts from a moderate value such as 0.5 

and then gradually decrease to and stay around a small percentile such as 0.05.  

The adaptive modification process is to increase the probability threshold PT , i.e. 

the probability of violation handling, where violation handling is triggered; or to 

decrease PT  where violation handling is skipped if self-recovery applies.  

In general, our adaptive temporal violation handling point selection strategy is to 

apply the adaptive modification process for probability threshold to the handling 

point selection rule. Table I describes the adaptive violation handling point selection 

strategy. Our strategy has 5 input parameters, viz. the current checkpoint pa  which 

is selected by TDCSS , the maximum probability time deficit and the minimum 

probability time redundancy at pa  which are specified  according to Definition 4 

and Definition 6 respectively, the current probability threshold for self-recovery, 

and the Boolean value for the result of the last temporal violation handling. The 

output is the decision for whether the current checkpoint will be selected as a 

handling point or not, i.e. whether a violation handling is necessary or not. 

The first step of our strategy is the adaptive modification process for probability 

threshold. The second step is a comparison between the probability of self-recovery 

and the probability threshold to determine whether the current checkpoint needs to 

be selected as a temporal violation handling point. 

 
Table I. Adaptive Temporal Violation Handling Point Selection Strategy 

Input 

A necessary and sufficient checkpoint pa  selected by TDCSS ; 

The maximum probability time deficit )( paMPTD ; 

The minimum probability time redundancy )( paMPTR ; 

The probability threshold for self-recovery PT ; 

The result of last temporal violation handling  FalseTrueSuccess , . 

Output True or False as a temporal violation handling point 

Step 1 Adaptive Modification of PT  

if ( TrueSuccess  )    

      )1(  PTPT     // if the last violation handling  is successful, the current 

probability threshold is increased according to a predefined speed 

else  

    )1(  PTPT   // if failed, decreased according to a predefined speed 

Step 2 Temporal Violation Handling Point Selection 
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if ( PTP  )  



    return False // i.e. pa  is not selected as a temporal violation handling point 

if the current probability of self-recovery is larger than the probability threshold, and 

temporal violation handling is skipped 

else  

    return True // i.e. pa  is selected as a temporal violation handling point and  

temporal violation handling is required 

 

Our strategy is based on the results of TDCSS  where the time overhead is 

negligible [Chen and Yang 2008b], the computation for the minimum probability 

time redundancy according to Definition 6 can be included in the checkpoint 

selection process [Liu et al. 2011c], PT  and Success  are variants. Therefore, the only 

extra cost for computing the input parameters is for the maximum probability time 

deficit according to Definition 4. After the input parameters are specified, the 

current probability of self-recovery is obtained according to Definition 7 and 

compared with the adaptively updated probability threshold to further decide 

whether a handling point will be selected or not. The time overhead for our violation 

handling point selection strategy can be viewed negligible since it only requires 

several steps of simple calculation. In the next section, we will evaluate the 

performance of our strategy comprehensively. 

 EVALUATION 5.

In this section, compared with other representative strategies, we demonstrate and 

validate the results of large scale comprehensive simulation experiments to verify the 

excellent performance of our adaptive temporal violation handling point selection 

strategy in reducing violation handling cost while maintaining satisfactory temporal 

conformance. The full details for the experiments and other related materials can all 

be found online2. 

 Simulation Environment 5.1

SwinDeW-C (Swinburne Decentralised Workflow for Cloud) [Liu et al. 2010b] is a 

prototype cloud workflow system running on SwinCloud, a cloud computing test bed. 

SwinCloud comprises of many distributed computing nodes. Each node contains 

many computing units. The primary hosting nodes include the Swinburne SUCCESS 

(Centre for Computing and Engineering Software Systems) Node, the Swinburne 

ESR (Enterprise Systems Research laboratory) Node, and the Swinburne 

Astrophysics Supercomputer Node. To simulate the cloud environment, first, 

VMWare (http://www.vmware.com/) is installed in SwinCloud nodes so that they can 

offer unified computing and storage resources. Based on VMWare, several groups of 

virtual machines are customised with different settings on CPU speed and memory 

space. Meanwhile, resource scalability is realised by dynamic creation and release of 

virtual machines. Second, we set up data centres on these nodes which can host 

different cloud services. In each data centre, Hadoop (http://hadoop.apache.org/) is 

installed to facilitate the MapReduce computing paradigm and distributed data 

management. More details about SwinDeW-C and SwinCloud can be found in [Liu et 

al. 2012]. 

 Simulation Experiments and Results 5.2

In the existing works, temporal violation handling point selection is regarded the 

same as checkpoint selection by nature, hence the state-of-the-art checkpoint 

 
2 http://www.ict.swin.edu.au/personal/yyang/doc/HandlingPointSelection.rar 

http://www.vmware.com/
http://hadoop.apache.org/


selection strategy (with the minimum number of selected checkpoints) TDCSS  [Chen 

and Yang 2008b] is implemented as the benchmark for comparison with ours. In 

addition, to evaluate the effectiveness of our adaptive strategy (denoted as AD ), a 

pure random handling point selection strategy denoted as RA  is also implemented. 

RA  selects handling points at necessary and sufficient checkpoints in a pure random 

fashion. The selection rule of RA  is as follows: at a necessary and sufficient 

checkpoint pa  selected by TDCSS , a random value R ( 10  R ) is first generated. 

Afterwards, R  is compared with the predefined fixed confidence threshold FT

)10(  FT , if R  is larger than FT , then pa  is selected as a handling point. 

Otherwise, pa  is not selected as a handling point. In RA , the fixed confidence 

threshold FT  actually decides how much the portion of checkpoints will be selected 

as handling points. For example, if FT is set as 0.9, then a total of 1-0.9=0.1, i.e. 10% 

of the checkpoints will be selected as handling points while the others will be skipped 

without violation handling. Meanwhile, to compare with the results of workflow 

execution under the natural condition, the strategy denoted as NIL , which records 

the violation rate without any temporal violation handling, is also implemented.  

The experimental settings are described in Table II.  

It should be noted that many parameters and models have been used in our 

experiments to generate testing cases. However, the entire searching space for all the 

parameters is too large to be fully covered. Therefore, as a common practice [Law and 

Kelton 2007], in our experiments, we adopt two general rules: 1) for static 

parameters such as the time compensation rate and success rate for violation 

handling strategies, we choose representative settings based on either the results 

obtained in the earlier work or real-world scientific workflow statistics/practice; 2) for 

dynamic parameters such as scientific workflow sizes and activity durations, we 

explore a large searching space by predefining a series of candidates or generating 

randomly on-the-fly. 
 

Table II. Experimental Settings 

Scientific 

Workflows 

Scientific workflow size: 1) large workflows: from 2,000 to 50,000 workflow 

activities; 2) small workflows: from 200 to 2,000 workflow activities; 

Activity durations: all activity durations follow the uniform distribution 

model3. The mean duration is randomly selected from 30 to 3000 time units; 

Temporal constraints: the initial build time probability for deadlines are set 

as 90% according to [Liu et al. 2011a]; 

Workflow segments: the average length of the workflow segments for 

subsequent activities is set as 1) 20 for large workflows; 2) 5 for small 

workflows; 

Random noises: the duration of one selected activity in each workflow 

segment is increased by 5%, 15% or 25% of its mean in different rounds. 

Temporal 

Violation 

Handling 

Temporal violation handling strategy: a pseudo strategy with 50% time 

compensation rate;  

Size of subsequent workflow segment: randomly selected as 3 to 5; 

Success rate: the success rate for violation handling is set as 80%. 

TDCSS  Default values as defined in [Chen and Yang 2011]. 

RA  
The fixed confidence threshold: FT is set as 0.9, i.e. select 10% from the total 

checkpoints as adjustment points in a pure random fashion. 

 
3 Note that we have tested our strategy with other distribution models such as normal, exponential and a 

mixture of them. The results are included in the online documents and the conclusions are consistent. 



AD  The update rate:   is initially set as 0.5 and gradually decreased to 0.05. 

NIL  Without temporal violation handling. 

 

The process structure is similar to the pulsar searching example presented in 

Section 2 where both high-level activities and sub-processes (represented by 

workflow segments which consist of sequential activities) are generated. Here, a 

workflow activity is an elementary activity such as a basic computation task or a 

data transfer task. To evaluate the average performance, 10 independent 

experiments with different typical scientific workflow sizes (ranging from 2,000 to 

50,000 workflow activities for large workflows with their mean activity durations 

between 30 to 3,000 time units) are executed 100 times each. Note that in Definition 

7 for the probability of self-recovery, normal distribution model is used when no prior 

knowledge is available. Here, to avoid the potential risk of “self-fulfilling”, we use 

uniform distribution model instead to generate the activity durations. Meanwhile, as 

included in our online documents, the experimental results for other distribution 

models such as normal, exponential, and a mixture of them are also available, and 

the conclusions are consistent. Note that in our previous work [Liu et al. 2011c] for 

checkpoint selection, both large workflows and small ones such as 200, 500 and 1,000 

have been investigated under very similar experimental settings. The results are 

consistent. Similarly, in this paper, we have also investigated the performance our 

strategy for small workflows (ranging from 200 to 2,000 workflow activities). Here, 

the size of 2,000 is included as the borderline for large and small workflows to ensure 

the continuity of the experiments. The experimental setup for small workflows is 

exactly the same except that the size of the workflow segment scales down 

correspondingly from 20 to 5 so as to ensure that the benchmark strategy TDCSS  can 

handle smaller workflow segments and still maintain the close to 0% violation rates 

[Liu et al. 2011c].  

The constraint setting utilises the strategy introduced in [Liu et al. 2011a]. As 

mentioned in Section 3, this paper only focuses on recoverable temporal violations.  

Therefore, the initial probability is set reasonably as 90% to serve as a type of QoS 

contract between the user and the service provider agreed at scientific workflow build 

time. Note that according to our setting strategy, every workflow activity is covered 

at least by three types of upper bound constraints: the global constraint, the local 

milestones, and the individual constraints. Therefore, the temporal dependency 

exists by nature. Here the initial probability means that a scientific workflow has a 

90% probability to finish on time, or in other words, 90% workflow instances can 

finish on time. Therefore, in our experiment, we specify the “satisfactory temporal 

conformance” as an acceptable temporal violation rate below 10% so as to meet the 

QoS contract. As for the actual acceptable temporal violation rate, it can be very 

different from application to application in the real world. In general, for those 

applications with hard deadlines (such as the weather forecast scientific workflow 

mentioned in the introduction), the temporal violation rate needs to be kept very low. 

However, for those applications with soft deadlines (such as our pulsar searching 

example and some other scientific workflows which need to process a large size of 

historic datasets in biology and geology, whether the final results can be delivered 

exactly on-time would not affect much of their usefulness), the users are much more 

tolerable with the temporal violation rate but it still needs be within a reasonable 

range for QoS.  

In practice, the initial probability can be a value either smaller or larger than 90%. 

To make the best use of our strategy, we recommend a practical range for the initial 

probability which is (90%, 99.87%). Here, its lower bound is set as 90% as a 

reasonable user requirement or standard service quality for temporal conformance 



[Liu et al. 2011a], its upper bound is set as 99.87% according to the “ 3 ” rule as 

presented in Section 3. The user may demand the initial probability over 99.87%, but 

a much higher service price will normally be charged by the cloud service provider 

since additional resources are likely required to ensure higher QoS. Once outside the 

practical range, if the initial probability is extremely low (e.g. much lower than 90%), 

a much larger number of violation handling is required. In such a case, the cost 

reduction rate would be very small because most of the checkpoints would also be 

selected as handling points. Another situation is when the initial probability is 

extremely high (e.g. very close to 100%), most of the checkpoints can be safely 

skipped because on-time completion is statistically guaranteed. In such a case, the 

cost reduction rate would be very large and the violation rate would be very small. 

However, in such a case, the total number of reduced checkpoints would be very 

small because there are very few temporal violations. In brief, our strategy can be 

applied to scientific workflows with different initial probabilities. Even in extreme 

cases, its performance can still be comparable to that of TDCSS , which is the 

benchmark for our work.  

The average length of the workflow segments is set as 20 which is a moderate size 

for a workflow sub-process similar to those high-level activities depicted in Figure 1. 

We demonstrated that it had little impact on the number of selected checkpoints in 

our earlier work [Liu et al. 2011c] where different sizes of workflow segments such as 

10, 20, 30, 40 and 50 were tested. Meanwhile, given a specific checkpoint, as 

presented in Section 4.2, our strategy can determine whether it needs to be selected 

as a violation handling point only based on the probability of self-recovery and the 

probability threshold, and these two parameters are both irrelevant to the size of the 

workflow segment. Therefore, it would not affect the performance of our strategy. 

Although under normal circumstances, the experiments can be conducted without 

noises (i.e. 0% noise), to simulate some worse case scenarios, random noises (i.e. a 

fixed rate of delays at random activities) are also injected to simulate extra delays 

accordingly along workflow execution due to potential unpredictable causes such as 

system overload and resource unavailability [Law and Kelton 2007]. For the 

comparison purpose, four rounds of simulation experiments with different random 

noise levels of 0%, 5%, 15% and 25% are conducted respectively to investigate the 

effectiveness of our strategy from normal to extreme situations.  

As for temporal violation handling, there are many violation handling strategies 

which can be utilised to tackle temporal violations such as workflow local 

rescheduling, extra resource recruitment and workflow restructure, and their 

capacity in reducing the occurring time deficits can be different. In general, temporal 

violation handling is to compensate for the time deficit by reducing the scheduled 

execution times of the subsequent workflow activities after the handling point. 

Therefore, in order to be generic and focus on the results of violation handling point 

selection, instead of applying a specific violation handling strategy in our 

experiments, a pseudo strategy with a reasonable average time compensation rate 

(i.e. the reduced rate of the scheduled execution time for the subsequent activities) of 

50% is applied to represent the average performance of representative temporal 

violation handling strategies [Liu et al. 2011c; Yu and Buyya 2007]. The number of 

activities in the subsequent workflow segment is randomly selected up to 5 which is 

normally large enough to compensate for time deficit with the given compensation 

rate. Meanwhile, in the real world, not every workflow local rescheduling can be 

successful (for example, when the current workload is extremely high). As observed 

in our previous work [Liu et al. 2011c], around 80% of the time, the local workflow 

rescheduling strategy is able to successfully compensate the time deficits within 3 to 

5 subsequent activities (same as the settings in our experiments). Therefore, 80% is 

selected as the representative success rate. In real-world systems, the success rate 



can be either smaller or larger depending on the system environments and the 

specific violation handling strategies. On one hand, if it is higher than 80%, the 

performance of our strategy would be better because time deficits can be statistically 

compensated with fewer violation handling points. On the other hand, if it is lower 

than 80%, with the adaptability of our strategy, the number of violation handling 

points would increase because more violation handling is required. Hence the 

violation handling cost would also increase accordingly. However, in practice, the 

strategy with low average success rate (e.g. below 50%) should normally not be used 

in the first place because in this case, a better strategy should be deployed instead, or 

alternatively, the users should be suggested to relax the current temporal constraints.  

TDCSS  is applied with default values as defined in [Chen and Yang 2008b]. The 

fixed confidence threshold for RA  is set as 0.9 (i.e. select 10%) so as to be comparable 

to our strategy. The initial probability threshold and the update rate for our strategy 

are set as 0.5 (mid-range initially) and 5% (a small percentile) respectively. This is a 

moderate and reasonable setting when there is no prior knowledge. Additionally, for 

the comparison purpose, the results of NIL (i.e. without any violation handling) are 

also presented. 

5.2.1 Detailed Overview of Experimental Results for Large Workflows 

In this section, we demonstrate the four rounds of experiments for large workflows in 

details. The results for small workflows will be presented separately in Section 5.2.2. 

 

 

 
 

 

 
Fig. 5.  Experiment results for large workflows (Noise=0%). 

 

The experimental results with 0% noise are depicted in Figure 5. To ensure the 

clarity of the details, we have zoomed in for the range of (0, 200) handling points and 



the range of (0%, 10%) violation rates. The case of 0% noise should be the norm in the 

real world when the system is under a reasonably smooth and stable condition. 

However, even in such a normal circumstance, the number of checkpoints (i.e. 

handling points) selected by TDCSS  (the time dependency based checkpoint selection 

strategy, i.e. the benchmark strategy) increases rapidly with the growth of scientific 

workflow size. For RA  (the random handling point selection strategy), since the fixed 

confidence threshold is set as 0.9, it chooses 10% of the handling points selected by 

TDCSS . NIL  (no selection) does not select any handling points. As for our adaptive 

handling point selection strategy, AD , it selects a very small portion, i.e. 3.5%, of 

those selected by TDCSS . This is a significant reduction, i.e. 96.5% of the violation 

handling cost over TDCSS  in terms of cost effectiveness.  

Meanwhile, we compare the violation rate of each strategy. The violation rate of 

NIL  is around 32.6%. As for TDCSS , the violation rate can be kept close to 0%. The 

violation rates for RA  and AD  are around 23% and 4% respectively for the scientific 

workflow with the size of 2,000, and they are getting closer to 0% violation rate when 

the workflow size is becoming larger. This seems to be reasonable at first considering 

the nature of our strategy is to skip unnecessary violation handling as much as 

possible, so if the workflow size is larger, there are higher chances that the occurring 

time deficits can be compensated for at a later stage. However, as will be shown in 

the following three rounds of experiments, when there are some noises (i.e. the 

system performance becomes more dynamic), such a trend does not exist anymore. 

 

 
 

 

 
Fig. 6.  Experiment results for large workflows (Noise=5%). 

 



The results with 5% random noise are depicted in Figure 6. The number of 

selected handling points by AD  is around 6.6% (namely 93.4% cost reduction) of 

TDCSS . In terms of temporal violation, the violation rate for NIL  is much higher 

than others which increases to over 90% when the workflow size is larger than 

40,000. The violation rate for TDCSS  can still be kept close to 0%. As for RA , the 

violation rate is generally higher than the previous round. But when the workflow 

size grows, the violation rate decreases since violation handling is conducted for 

many more times. In contrast, our strategy AD  behaves stably and keeps an average 

temporal violation rate at only around 3.8%.  

 

 
 

 
Fig. 7.  Experiment results for large workflows (Noise=15%). 

 

Figure 7 shows the results with 15% random noise. AD  adaptively selects more 

handling points than that in the previous round due to the increase of the noises. On 

average, the number of handling points selected by AD  is 32.3% more than that of 

RA , and it is around 14.7% (namely 85.3% cost reduction) of TDCSS . In terms of 

temporal violation, the violation rate for NIL  is close to 100% for all the workflows 

larger than 15,000. In contrast, TDCSS  can still keep the violation rate close to 0%. 

The violation rate for RA  is above 78% and increases to over 90% when the workflow 

size is above 30,000. As for AD , since it can adapt to the dynamic system 

performance, the violation rate is still stable with an average violation rate only 

increasing to around 8.4%.  

 



 
 

 
Fig. 8.  Experiment results for large workflows (Noise=25%). 

 

Figure 8 shows the results with a rather extreme 25% random noise. The number 

of selected handling points by AD  is generally larger, actually with an average of 56% 

more than that of RA , and it is around 22.7% (namely 77.3% cost reduction) of TDCSS . 

In terms of temporal violation, the violation rate for NIL  is clearly close to 100% for 

all the cases. TDCSS  can still keep the violation rate close to 0% at the cost of a large 

amount of violation handling. The violation rate for RA  is now also close to 100% for 

most workflows larger than 10,000. However, AD  can still behave stably with an 

average temporal violation rate of around 9.4% under such an extreme situation, 

which still meets the “satisfactory temporal conformance” with smaller than 10% 

violation rate. 

As shown in Figure 9, against the benchmark of TDCSS , the cost reduction rates of 

our strategy are around 96.5% for 0% noise; 93.4% for 5% noise; 85.3% for 15% noise 

and 77.3% for 25% noise respectively; and the corresponding violation rates are 

around 1.3% for 0% noise; 3.8% for 5% noise; 8.4% for 15% noise and 9.4% for 25% 

noise respectively, all below 10% violation rate which denotes satisfactory temporal 

conformance. The average cost reduction rate is 88.1% and the average violation 

increase rate is 5.7%. Note that we have also observed the time overruns in every 

workflow instance with our strategy. The results show that even when those 

temporal violations take place, the time overruns are often very small in comparison 

to the overall temporal constraint which can most likely be tolerated by users (see 

footnote 2 for more details). In overall terms, the results effectively demonstrate that 

our adaptive temporal violation handling point selection strategy can significantly 

reduce the violation handling cost while maintaining satisfactory temporal 

conformance, i.e. lower than the temporal violation rate of 10% which is the agreed 



QoS contract between users and service providers before workflow execution. In 

particular, the results for 0% noise with the 96.5% cost reduction rate yet the 1.3% 

violation rate is very promising in terms of cost effectiveness and temporal 

conformance because this is the normal circumstance.  

 

 
Fig. 9.  Cost reduction rate vs. violation increase rate (for large workflows). 

 

5.2.2 Brief Overview of Experimental Results for Small Workflows 

In this section, given the similarity to the preceding section, we only briefly 

demonstrate the experimental results for small workflows which are under the same 

experimental settings except that the size of the workflow segment scales down from 

20 to 5 to ensure the performance of the benchmark strategy.  

The results for the four rounds of experiments with 0%, 5%, 15% and 25% noises 

are shown in Figure 10.a, Figure 10.b, Figure 10.c and Figure 10.d respectively. As 

can be seen from these figures, the variations for the number of the handing points 

and the violation rates are very similar compared to the results for large workflows. 

However, it should be noted that due to the decrease of the workflow segment size (i.e. 

from 20 to 5), checkpoint selection for small workflows is conducted at a much more 

fine-grained level than large workflows, and hence more checkpoints are selected to 

ensure the close to 0% violation rates by TDCSS . But, the performance of our strategy 

is stable despite such a change. To demonstrate such an effect, the workflow size of 

2,000, as the borderline between large and small workflows, is investigated with the 

workflow segment size of both 20 and 5. For example, as shown in Figure 5 (round 1 

for large workflows), the number of selected checkpoints by  TDCSS  is 49.3 while its 

counterpart is 199.2 as shown in Figure 10.a (round 1 for small workflows). However, 

the corresponding number of violation handling points selected by our AD  strategy is 

5.9 for the former and 6.1 for the latter, which is very similar. Such a result clearly 

demonstrate the fact that our violation handling strategy is capable of selecting only 

Key points from the large set of checkpoints to conduct necessary violation handling.   

 



 
a. Round 1(Noise=0%) 

 
b. Round 2(Noise=5%) 

 
c. Round 3(Noise=15%) 

 
d. Round 4(Noise=25%) 

 
e. Overall Comparison 

Fig. 10 Experimental results for small workflows. 

 

Specifically, as shown in Figure 10.e, against the benchmark of TDCSS  , the cost 

reduction rates of our strategy for small workflows are around 95.5% for 0% noise; 

92.6% for 5% noise; 85.6% for 15% noise and 78.8% for 25% noise respectively; and 

the corresponding violation rates are around 1.9% for 0% noise; 3.8% for 5% noise; 7.6% 

for 15% noise and 9.7% for 25% noise respectively, all below 10% violation rate which 

denotes satisfactory temporal conformance. The average cost reduction rate is 88.1% 

and the average violation increase rate is 5.8%. It is evident that the results for small 

workflows are very similar to that of large workflows presented in Section 5.2.1. 

Therefore, we can claim that the effectiveness of our strategy is consistent no matter 

for large or small workflows.  



Based on the experimental results demonstrated in the above two sections and 

those included in our online documents, we can list some of the important facts as 

follows: 

1) Based on the experimental results with different distribution models (e.g. 

uniform, normal, exponential, and a mixture of them), we can conclude that 

the effectiveness of our strategy is consistent regardless the actual 

distribution models. 

2) Based on the experimental results with different workflow sizes (from 200 to 

50K), we can conclude that the effectiveness of our strategy is consistent 

regardless the workflow sizes. 

3) The best result achieved in our experiments is 98.7% cost reduction rate and 

close to 0% violation rate (when activity durations follow normal distribution 

and there is no noise), while the worst result achieved in our experiment is 

77.3% cost reduction rate and 9.4% violation rate (when activity durations 

follow uniform distribution and there are 25% noises).   

To summarise, the experimental results demonstrated in this paper show that our 

strategy can significantly reduce the cost on temporal violation handling by over 96% 

while maintaining extreme low (about 1.3%) violation rate with marginal overruns 

under normal circumstances (with uniform distribution and 0% noise). Therefore, 

with fundamental requirements of temporal conformance and cost effectiveness, we 

can conclude that our strategy performs much better than other representative 

temporal violation handling point selection strategies with different system 

performance varying from smooth to non-smooth situations.  

 ANALYSIS ON COST REDUCTION 5.3

The above experiments demonstrate the cost reduction rate which denotes the overall 

percentage of monetary cost and time overhead that can be reduced. In this section, 

we will further analyse how much monetary cost (in dollars) and time overhead (in 

CPU hours) can be actually reduced. However, since every scientific workflow system 

may reside in a specific system environment with different resource capabilities, 

pricing models (e.g. the price for computing, storage and network devices), and the 

choices of temporal violation handling strategies, it is not practical, and unnecessary, 

for us to conduct cost analysis for every situation. Therefore, we illustrate with 

representative experimental settings. 

 
Table III. Settings for cost analysis 

Workflow Settings 

Data Size 

For each workflow activity, its data size (the input data 

required for their execution) are generated within a 

range of (0.1GB~0.5GB) 

Other Settings Same as described in Table II 

Resources and Prices 

Computation Speed 

The computation speed for each resource is defined as 

1, i.e. all the workflow activities are completed with 

their average duration as defined in Table II.   

Computation Price 
The computation price is $2.00 per hour (High-Memory 

Quadruple Extra Large on-demand instances). 

Network Speed 
The network speed is 1GB/s (Standard Gigabyte 

Ethernet in cloud data centres). 

Network Price The network price is $0.05 per GB. 

 

In general, for the running of scientific workflows, the cost is mainly generated by 

the usage of three types of resources, viz, computation, storage and network. Here, 

since we only consider the extra cost brought by violation handling, the cost for data 

storage could not change, hence not be included. In contrast, the costs for 

computation and network could be included since they require extra usage of 



resources. Therefore, in our experiments, we focus on the costs for computation and 

network only.  

In order to estimate the violation handling cost, additional settings on the 

workflow activities and resources have been presented in Table III. The data size for 

each workflow activity is randomly generated within the range of 0.1GB to 0.5GB 

which is the primary range for intermediate date sets in the pulsar searching 

example. The other settings on scientific workflows are the same as shown in Table II. 

The resource prices are set based on the Amazon Web Services (AWS) pricing model 

(http://aws.amazon.com/pricing/) where AWS is one of the world’s largest commercial 

cloud computing service providers. In the AWS cloud, computation activities are 

fulfilled by the EC2 services (Elastic Compute Cloud, http://aws.amazon.com/ec2/) which 

can provide different levels of compute capacities. For example, in the pulsar 

searching workflow, to execute data and computation intensive activities, we would 

need to choose the High-Memory Quadruple Extra Large Instance which has 68.4 GB 

of memory, 26 EC2 Compute Units (8 virtual cores with 3.25 EC2 Compute Units 

each), and 1690 GB of local instance storage. This type of EC2 service is comparable 

to the compute capacity of a computing node with 2 quad-core processors in our 

Swinburne Supercomputer node as mentioned in Section 5.1. The price for EC2 

services may vary in different regions. For a High-Memory Quadruple Extra Large 

Instance in US East (Virginia), the price is $2.00 per hour. For data transfer, AWS 

offers several options with different speeds and prices such as Internet transfer, 

internal network transfer and the novel AWS Import/Export (http://aws.amazon.com/ 

importexport/) service which can use portable storage devices and transfer the data 

onto and off of storage devices. For conventional network transfer, AWS has a 

complex pricing model where the prices are decreasing with the increase of the data 

volume. Therefore, according to the data size for our pulsar searching example, we 

choose the following setting for the network resources which is consistent to the AWS 

pricing model. Specifically, the network speed is set as 1GB/s which is a comparable 

speed for a standard Gigabyte Ethernet in the cloud data centres, and the 

corresponding network price is $0.05 per GB. 

Note that in some computing environments such as scientific community grid, 

computing and network resources are used by community members for free, normally 

after allocation of resource consumption quotes. In such cases, there will be no 

explicit monetary cost on the user’s side as it is on system’s side. Meanwhile, the time 

overhead is critical in any computing environment since it contributes to the overall 

completion time of scientific workflows. 

Based on the settings in Table III, we demonstrate two basic scenarios 

respectively with two representative violation handling strategies, viz. workflow local 

rescheduling, and extra resource recruitment. At the moment, we only demonstrate 

the results for a single violation handling. Given there could be a large number of 

violations, the overall cost reduction can be estimated with the total number of 

violation handling points. 

Scenario 1: Workflow local rescheduling 

Workflow local rescheduling is to compensate for the time deficit by optimising 

the current activity-resource assignment. The major monetary cost and time 

overhead involved in workflow local rescheduling are generated by activity transfer 

(including input data, activity definitions, and programs if required) between 

resources, and the computation of the rescheduling strategy. The workflow local 

rescheduling strategy adopted here is an ACO based two stage workflow local 

rescheduling strategy (ACOWR) which optimises the integrated task-resource list 

including both the activities of the violated workflow segment and their co-located 

activities [Liu et al. 2010a]. As shown in Table IV, to accommodate the requirements 

of ACOWR, three test cases: Case 1, Case 2 and Case 3 with increasing numbers of 

http://aws.amazon.com/pricing/
http://aws.amazon.com/ec2/
http://aws.amazon.com/importexport/
http://aws.amazon.com/importexport/


workflow activities, local workflow segments (i.e. a small set of 3 to 5 activities with 

precedence relationship) and workflow resources are generated.  

 
Table IV. Cost for workflow local rescheduling 

Items Case 1 Case 2 Case 3 

Number of activities 100 180 300 

Number of segments 12 25 50 

Number of resources 6 10 20 

Computation cost $1.34*10-3 $2.6*10-3 $5.3*10-3 

Transfer cost $0.318 $0.564 $0.942 

Total cost $0.319 $0.567 $0.947 

Computation time 2.42s 4.75s 9.54s 

Transfer time 3.17s 5.65s 9.42s 

Total time 5.59s 10.40s 18.96s 

Average cost $0.60 

Average time 12.0s 

 

Meanwhile, during the execution of scientific workflows, intermediate data can be 

handled in two basic ways. In the first way, after the completion of the predecessor 

activities, the produced intermediate data will be transferred according to the routing 

of the scientific workflow, i.e. the data will be passed to the applications in charge of 

processing the successor activities. In the second way, the intermediate data will be 

stored in the same location over the entire workflow lifecycle. All the successor 

activities will read the intermediate data, process it, and then write back the 

execution results. In scientific workflows, if the data needs to be processed locally by 

the application, the intermediate data will normally be handled in the first way. 

Otherwise, the intermediate data will normally be handled in the second way. 

Accordingly, in the first way, after workflow local rescheduling, the intermediate 

data needs to be moved together with its corresponding activity when it has been re-

allocated, which may incur extra cost on data transfer. In contrast, in the second way, 

there is no extra cost since the intermediate data will be read from the original 

location before and after workflow local rescheduling. In our experiments, 

considering the fact that the second way dominates most of the scientific workflows, 

and based on the Pareto principle (also known as the 80-20 rule) [Law and Kelton 

2007], 80% of the intermediate datasets are specified as handled in the second way 

while the other 20% in the first way. 

The total monetary cost and total time overhead required for a single workflow 

local rescheduling are listed in Table IV. Here, the total monetary cost for a single 

workflow local rescheduling is equal to the sum of the computation cost (i.e. the cost 

for running the rescheduling algorithms) and the transfer cost (i.e. the cost for 

necessary data transfer); the total time overhead for a single workflow local 

rescheduling consists of the computation time (i.e. the time for running the 

rescheduling algorithms) and the transfer time (i.e. the time for data transfer). The 

results show that for workflow local rescheduling, the major cost component is the 

cost generated by data transfer, while the computation cost for the rescheduling 

algorithms is very minor in comparison. This is consistent with the current 

experience in running applications in the cloud where the bottleneck of the system 

performance is usually the network. Based on such results, we can have the 

conclusion that for a typical single workflow local rescheduling scenario (with around 

200 activities and 10 resources), the average monetary cost is around $0.60 and the 

average time overhead is around 12 seconds. 

Scenario 2: Extra resource recruitment 

As for extra resource recruitment, it is to compensate for the time deficit by 

employing additional resources for the violated workflow instances at runtime. Its 



major monetary cost and time overhead are generated by the set-up of new resources 

(recruit and deploy) and the data transfer. For extra resource recruitment, adding a 

new resource is the most common way to handle temporal violations. In our 

experiments, similar to the local workflow segment rescheduled by ACOWR in 

Scenario 1, an average size of 3~5 activities are transferred to a new resource.  

The total monetary cost and total time overhead required for adding a new 

resource are listed in Table V. The total monetary cost for adding a new resource 

consists of three components, viz. the set-up cost, the computation cost and the 

transfer cost. Since the AWS cloud adopts the “pay-as-you-go” model, it is free for 

setting up new resources. Meanwhile, since the computation cost would not change 

for executing the re-allocated activities, it will not generate extra charge (denoted as 

Nil in the table). Therefore, the only extra charge is the transfer cost. The total time 

overhead consists of the set-up time for a new service and the transfer time for the 

data. In the AWS cloud, it is usually around 5 minutes to request a new EC2 service 

instance and deploy necessary software services. Therefore, in our experiments, we 

assign the set-up time as 5 minutes, i.e. 300 seconds. Clearly, the set-up time is much 

bigger compared with the data transfer time in our three cases. This is consistent to 

the current situation where adding new resources at runtime (named as “on-demand 

instance”) produces large time overhead. To overcome such a problem, EC2 also 

offers another choice named the “reserved instance” (http://aws.amazon.com/ec2/reserved-

instances/) which is standby for immediate use. However, reserved instances are 

charged in advance for a fixed term such as 1-year or 3-years. Therefore, it can 

become a type of waste if the reserved resources are not well utilised. Clearly, this is 

a trade-off between cost and time. In this paper, we only consider the on-demand 

instance for illustration. Based on such results, we can have the conclusion that for a 

typical single workflow local rescheduling scenario, by adding a new resource, the 

average total cost is around $0.09 and the average total time is around 301.0 seconds. 

 
Table V. Cost for adding a new resource 

Items Case 1 Case 2 Case 3 

Number of activities 3 4 5 

Set-up cost Free Free Free 

Computation cost Nil Nil Nil 

Transfer cost $0.056  $0.076 $0.142 

Total cost $0.056  $0.076 $0.142 

Set-up time 300s 300s 300s 

Transfer time 0.57s 0.77s 1.42s 

Total time 300.6s 300.8s 301.4s 

Average cost $0.09 

Average time 301.0s 

Based on the above results, we can see that in the AWS cloud, workflow local 

rescheduling is relatively expensive but has very small time overhead, while adding a 

new resource is much cheaper but has a very large time overhead. Therefore, as for 

which strategy should be applied, it is an interesting trade-off that needs to be 

decided. However, this is beyond the scope of this paper and hence will be addressed 

elsewhere in the future. Note that we have also analysed three other representative 

violation handling strategies including stop and restart, processor swapping and 

workflow restructure, and the cost generated by them are even larger. Discussions 

are included in a technical report which can be found online (see footnote 2 on page 

17) and hence omitted here. Now we demonstrate how much cost and time may be 

actually reduced in our motivating example by our strategy based on the results of 

violation handling point selection and cost analysis of violation handling strategies 

presented above. It should be noted that other workflows with larger sizes will have 

http://aws.amazon.com/ec2/reserved-instances/
http://aws.amazon.com/ec2/reserved-instances/


higher cost reduction and time reduction because their number of reduced violation 

handling points is larger as demonstrated in Section 5.2. 

The pulsar searching workflow contains over 200 high-level activities (including 

the 13 parallel paths for different beams) where each may have more than tens of 

sub-level activities which are elementary activities. Therefore, the pulsar searching 

workflow can contain more than 2,000 activities. Meanwhile, as introduced in Section 

2.1, since each pulsar searching workflow needs to be finished within 24 hours, we 

assume it runs for a maximum of once a day, i.e. 365 times per year. Based on these 

figures, we choose the results for the workflow size of 2,000 activities (as long 

workflows), and calculate how much cost and time can be reduced every year by the 

implementation of our strategy in the two representative scenarios, viz. workflow 

local rescheduling and extra resource recruitment.   

 

 
Fig. 11.  Yearly cost reduction for the pulsar searching workflow. 

 

Figure 11 depicts the yearly cost reduction for the pulsar searching workflow. As 

analysed above, for a typical workflow local rescheduling scenario, the average cost is 

around $0.6, and for a typical extra resource recruitment scenario, the average cost is 

around $0.09. Therefore, since the total number of temporal violations is around 

19,000 per year (the average number of temporal violation handling points selected 

by TDCSS  multiplied by 365 runs per year), the yearly cost for temporal violation 

handling is tremendous. With our adaptive violation handling point selection 

strategy, the reduced number of violation handling points is around 15,600 per year. 

Therefore, the yearly cost reduction for violation handling is very impressive. As 

shown in Figure 11, the reduced cost for each round of experiments is very close to 

each other. Specifically, the average yearly reduced cost for workflow local 

rescheduling is around $9,400, and the average yearly reduced cost for extra resource 

recruitment is around $1,400. 

 
Fig. 12.  Yearly time reduction for the pulsar searching workflow. 

 

Figure 12 depicts the yearly time reduction for the pulsar searching workflow. As 

analysed above, for a typical workflow local rescheduling scenario, the average time 

is around 12 seconds, and for a typical extra resource recruitment scenario, the 

average total time is around 301 seconds. Therefore, the yearly time reduction for 

workflow local rescheduling is relatively smaller. As shown in Figure 12, the reduced 



CPU hours for each round of experiments are very close to each other. Specifically, 

the average yearly reduced time for workflow local rescheduling is around 52 CPU 

hours, and the average yearly reduced time for extra resource recruitment is around 

1,306 CPU hours. 

To conclude, in scientific workflow systems, no matter with workflow local 

rescheduling or extra resource recruitment at workflow runtime, the total monetary 

cost and time overhead for handling temporal violations are non-trivial. Therefore, 

temporal violation handling should only be conducted unless truly necessary. Our 

adaptive temporal violation handing point selection strategy plays a significant role 

in making such a decision and it helps to achieve significant reduction of the overall 

temporal violation handling cost and time in scientific workflow systems. 

5.4 Threats to Validity 

Here we discuss the threats to validity in our work. We discuss the external threats 

followed by the internal threats. 

External threats to validity. The main threat to the external validity of our 

evaluation is the representativeness of our motivating example. The pulsar searching 

process is a typical scientific workflow which has the special features such as 

computation, data and transaction intensity, less human interaction, and a large 

number of activities [Taylor, et al. 2007]. Therefore, the data collected from the 

pulsar searching process, especially the statistics for activity durations (viz. the 

sample means and the sample standard deviations), are representative. But still, for 

those scientific workflows from other areas, the statistics can be very different, 

especially the mean durations. But as we can see from the definitions of Probability 

Time Deficit and Probability Time Redundancy in Section 4.2, our adaptive violation 

handling point selection strategy mainly concerns with standard deviations which 

represent the dynamics of the system environments. The basic idea of our strategy is 

to fully utilise the time redundancy of each activity (defined by the standard 

deviation and the probability percentile) to compensate for the time deficit. Therefore, 

the main external threat, i.e. whether our work can be generalised to other scientific 

workflows, is the representativeness of the measured standard deviations. We 

minimised this issue by comparing with one of our earlier work in [Liu et al. 2011a] 

on a weather forecast scientific workflow. The system performance is very dynamic 

and very similar to our pulsar searching process. Similar findings are also reported 

in other literatures [Prodan and Fahringer 2008]. Therefore, the system dynamics of 

our simulation experiments should be representative.  

Internal threats to validity. The main threat to the internal validity of our 

evaluation is the comprehensiveness of our experiments. Many parameters and 

models have been used to generate the testing cases and evaluate the performance of 

our strategy. Given that the entire searching space for all the parameters are too 

large to be fully covered, therefore, as mentioned at the beginning of Section 5.2, we 

minimise this issue by adopting two general rules as a common practice [Law and 

Kelton 2007] in our experimental settings, namely: 1) for static parameters, such as 

the compensation rate and the success rate for violation handling, we choose 

representative settings based on either the results obtained in the earlier work or 

real-world scientific workflow statistics/practice; 2) for dynamic parameters, such as 

the workflow sizes and activity durations, we explore a large searching space by 

predefining a series of candidates or generating randomly on-the-fly. Meanwhile, also 

recommend the practical ranges of parameter settings to make the best use of our 

strategy. Therefore, our comprehensive experiments have explored a representative 

and large enough searching space for the parameters.  



 RELATED WORK  6.

Time, as one of the most basic measurements for system performance, has long been   

used and studied in software engineering practice and research [Chinn and Madey 

2000; Law and Kelton 2007; Schwalb and Vila 1998]. In the real world, since many 

workflow processes are required to be completed in a constrained period of time, 

temporal constraints are among the most important workflow QoS constraints 

besides cost, fidelity, reliability and security as discussed in [Yu and Buyya 2005]. 

There are many studies contributing to the management of temporal constraints in 

workflow systems such as process modelling, verification and validation, monitoring, 

exception handling and performance analysis [van der Aalst and Hee 2002; van der 

Aalst et al. 2000; Chen and Yang 2008a; Lerner et al. 2010; Russell et al. 2006b]. The 

violations of temporal constraints, i.e. failures of in-time completion, can be regarded 

as a type of non-functional exception.  In contrast to the studies on the traditional 

functional exceptions of workflow systems [Buhr and Mok 2000; Hagen and Alonso 

2000], the research on non-functional exceptions, i.e. QoS violations, has attracted 

increasing interests due to the popularity and the dynamic service quality of 

distributed computing infrastructures such as grid, p2p and cloud [Ferretti et al. 

2010; Krauter et al. 2002; Liu et al. 2010b]. 

In the area of temporal QoS management in scientific workflow systems, many 

efforts have been dedicated to different tasks involved in temporal verification. The 

work in [Liu et al. 2011a] proposes a probabilistic strategy for setting both workflow-

level (coarse-grained) and activity-level (fine-grained) temporal constraints based on 

a negotiation process between users and service providers. As mentioned earlier, a 

runtime checkpoint selection strategy aims at selecting activity points on the fly to 

conduct temporal verification and/or violation handling so as to improve the 

efficiency of monitoring large scale scientific workflows and reduce the computation 

cost [Chen and Yang 2007a]. Meanwhile, to reduce the violation handling cost, 

multiple-state based temporal verification is proposed to detect multiple fine-grained 

temporal violations so that different temporal violations (with different levels of time 

deficits) can be tackled by different violation handling strategies [Chen and Yang 

2007a; Liu et al. 2011c]. Many scheduling and rescheduling algorithms have been 

investigated and applied in both workflow and general software application processes 

to address QoS requirements and exceptions [Yu and Buyya 2007; Yu and Shi 2007]. 

The work in [Xiao et al. 2010] proposes a multi-objective rescheduling method to 

address the need for software project resource management in handling different 

types of exceptions.  

In recent years, many checkpoint selection strategies, from intuitive rule based to 

sophisticated model based, have been proposed. The work in [Eder, et al. 1999] takes 

every workflow activity as a checkpoint. The work in [Marjanovic and Orlowska 1999] 

selects the start activity as a checkpoint and adds a new checkpoint after each 

decision activity is executed. It also mentions a type of static activity point which is 

defined by users at the build-time stage. There are also some other strategies such as 

the one which selects an activity as a checkpoint if its execution time exceeds the 

maximum duration and the one which selects an activity as a checkpoint if its 

execution time exceeds the mean duration [Chen and Yang 2011]. The checkpoint 

selection which satisfies the property of necessity and sufficiency is proposed in 

[Chen and Yang 2007a] where an activity point is selected as a checkpoint if and only 

if its execution time is larger than the sum of its mean duration and its minimum 

time redundancy. Based on that, the work in [Chen and Yang 2008b; Chen and Yang 

2011] further improves the efficiency of temporal verification by utilising the 

temporal dependency between temporal constraints. While these previous works are 

mainly based on the (discrete) multi-state based temporal consistency model, the 

latest work in [Liu et al. 2011c] utilises the (continuous) probability based temporal 



consistency model which can take advantages of more complex statistical models and 

thus to further improve the effectiveness of the checkpoint selection strategy. So far, 

to the best of our knowledge, the temporal consistency based checkpoint selection 

strategy is the most efficient checkpoint selection strategy that can be found in the 

literature. Therefore, it is facilitated as the foundation for our work reported in this 

paper.  

The phenomenon of self-recovery, especially in scientific workflows where the 

performance of underlying infrastructure is very dynamic, has been overlooked by 

most researchers. The work in [Chen and Yang 2007b] proposes a light-weight 

temporal violation handling strategy named TDA (time deficit allocation). Although 

self-recovery has not been formally defined there, the idea of TDA which utilises the 

time redundancy of the subsequent activities to compensate for the current time 

deficit can be regarded similar to self-recovery. However, it is used as a violation 

handling strategy or as a pre-step for workflow local rescheduling as detailed in [Liu 

et al. 2011b]. The issue of temporal violation handling point selection has so far not 

been explicitly proposed in any literature because conventional studies believe that 

similar to the handing of functional exceptions, every temporal violation in scientific 

workflow systems needs to be handled. Hence temporal violation handling point 

selection has not been regarded as a separate task from necessary and sufficient 

checkpoint selection. However, the non-functional nature of temporal violations has 

been neglected. Therefore, the research in temporal violation handling point selection 

is still in its infancy that requires much more efforts along the line.  

 CONCLUSIONS AND FUTURE WORK 7.

In the context of temporal violation handling in scientific workflow systems, to 

reduce the high and rapidly increasing cost for resolving temporal violations, 

effective temporal violation handling point selection is required to decide whether 

violation handling should be conducted immediately once a temporal violation is 

detected. The existing work on workflow temporal management believes that, similar 

to functional exceptions, temporal violations should be handled whenever they are 

detected. Therefore, temporal checkpoints are treated the same as temporal violation 

handling points, but the non-functional nature of temporal violations has been 

neglected. However, differing from the state-of-the-art necessary and sufficient 

checkpoint selection, this paper presents a trade-off between temporal conformance 

and cost effectiveness which could be made in temporal violation handling point 

selection to reduce the high violation handling cost. Therefore, motivated by the 

phenomenon of self-recovery, i.e. the phenomenon that the occurring time deficit 

could be automatically compensated for by the time redundancy of the subsequent 

workflow activities, a novel adaptive temporal violation handling point selection 

strategy has been proposed based on a probability based runtime temporal 

consistency model. The results of large scale simulation experiments have 

demonstrated the cost effectiveness of our strategy as it can significantly reduce the 

violation handling cost over other representative strategies while maintaining 

satisfactory temporal conformance. Specifically, our strategy can significantly reduce 

the cost on temporal violation handling over 96% while maintaining extremely low 

violation rate with marginal overruns under normal circumstances. Moreover, for our 

pulsar searching motivating example, the yearly cost reduction can reach an average 

of $9,400 (with workflow local rescheduling as the selected violation handling 

strategy), and the yearly time reduction can reach an average of 1,306 CPU hours 

(with extra resource recruitment as the selected violation handling strategy). 

Therefore, based on the results demonstrated in this paper, we can change the 

conventional answer to the question “do we need to handle every temporal violation in 

scientific workflow systems” from “true” to “not necessarily true”. To the best of our 



knowledge, this is the first work that has proposed and systematically investigated 

the problem of temporal violation handling point selection in scientific workflow 

systems.  

In the future, we plan to investigate the temporal violation handling cost in other 

software applications to further illustrate the benefit of the work. We also aim to 

investigate and improve our strategy for better temporal conformance in the system 

environments where extremely large noises exist but some prior knowledge may be 

available. This requires joint efforts of temporal knowledge discovery, temporal 

violation handling point selection as well as temporal violation handling strategies.  
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